Minggu, 23 September 2007

Belanja Kebutuhan Lebaran di ”Sogo Jongkok” Bintaro


Rating:★★★
Category:Other
لسلام عليكم و رحمة الله و بركاته


Hari Minggu kemaren kami sekeluarga belanja kebutuhan baju untuk lebaran anak-anak dan keluarga di “ Sogo Jongkok “ Bintaro, tepatnya di Belakang Mc Donald Sektor IX.
Dua kali lebaran tahun yang lalu kebutuhan belanja buat anak2 kebetulan saya yang atur, dan saya lebih menyukai pasar modern di depatrtment store, karena selain barangnya bagus2 dan bermerek juga sudah ada harganya dan yang penting pembayarannya gak terlalu ribet cukup Gesek dan bulan depan baru bayar.

Nah untuk tahun ini, Istri saya yang atur dia ngajak kepasar kaget “ Sogo Jongkok “ Bintaro, lumayan lama juga kita belanja disana.
Pasar Kaget “ Sogo Jongkok “ ini dibuka dari Jam 07:00 ~ 12:00 dan hanya ada pada hari Sabtu dan minggu saja, hari lain tidak ada.
Pola Pasar Kaget ini mengikuti pola Pasar Kaget “ Sogo Jongkok “ di Tanabang dimana tahun 1999 kami sekeluarga juga kesana, dan waktu itu kami masih mempunyai dua orang anak, saya waktu itu kebagian jagain anak dan parkir didaerah dimana tempat jual spare part kendaraan…..waduh…waktu itu saya mengalami kejadian yang ga enak deh…!! Sudah jagain anak yang masih kecil-kecil mobil dibongkar-bongkar oleh orang yang yang ga bener....!! ( kalau inget itu saya senyum dalam hati ).

Nah, di Bintaro ini saya gak terlalu repot, kebetulan adik tinggal didaerah sana jadi anak2 kami titipkan di rumah adik dan kita berdua dengan mengendarai sepeda motor Mio luncur menuju kesana.

Pas masuk kepasar Uach….reme juga dan barang2 yang ditawarkan lumayan bagus juga, Cuma itu tadi harus teliti dalam memilih dan pintar-pintar dalam menawar…..kolo soal yang ini Istri saya paling jago deh….kayaknya.
Karena saya tahu prinsif belanjanya : pertama barang itu harus murah….kedua barangnya bagussss…..ketiga ukurannya biasanya harus lebih gede dari ukuran anak2. Katanya biar makenya awet dan karena perkembangan anak2 biasanya cepat….sehingga baju yang besar akan dipake dalam jangka waktu yang lama ( gila deh….???!!! ).
Ya, namanya juga bodyguard alias Pengawal….ikut deh kata Boss…!!!!

Cari dan muter-muter ketemu juga tuh.....Baju anak2 pilihannya....emang lumayan bagus juga.....sih...., pas tawar menawar udah deh biasanya saya berbalik muka dari penjualnya....ampun deh...sadis buanget nawarnya...!!!!, langganan kek... beli banyak kek....Jaitannya ga rata kek....warnanya kurang seperti yang diharapkan kek....dsb dst...tapi intinya mental tuh penjual dia jatuhin dulu deh...!!!
Tapi lama kelamaan tuh penjual ikut juga dan harga seperti harapkan tercapai......bingun saya....???? beberapa kali saya bilang Ma..nawarnya jangan keterlaluan khan kasian....!!! dia jualan khan mau untung juga......??? Ya...kalau dia rugi pasti ga dia kasih harga segitu....saya pikir benar juga......!!!???
Kalau soal tawar menawar memang Ibu-ibu pasti lebih Pinter kayaknya ya.....!!

Lumayan deh, baju anak2 buat lebaran sudah lengakap demikian juga buat istri saya juga udah lengkap dan saya juga kebagian, dibeliin baju koko yang warna dan bordirannya bagus...dan harganya juga miring buanget.....ma kasih ya Ma......!!!

Tapi sebelum cerita, belanja ini berakhir ....ada kejadian lucu yang saya alami sendiri....
Pas belanja dan tawar-menawar....saya kurang begitu sreekk denga baju dan tawaran istri saya, kebetulan saya tidak begitu memperhatikannya....saya memperhatikan pakaian yang lain yang lebih bagus......!!!
Karena itu saya tarik aja pundak atau bahunya......Ma..kita kesana aja dulu....!!! kita cari-cari yang laen dulu....nanti kita pasti ketemu yang bagus.....sambil bilang seperti itu ... !! tuh istri saya menepis tangan saya dan sedikit menghindar.....!!! bingung saya....????
Pas dilhat...Masya Allah ternyata bukan istri saya......tau deh sapa tuh cewek......!!!
Pantesan dia menepis ...... malu deh aqu......!!!!


Sept. 23, 2007

Sabtu, 22 September 2007

Seutas Tali bersimpul dua

Rating:★★★★
Category:Other
Kuhentak nyala kalbuku, seolah hari esok kan tertunda….!!
Kutepis pikiranku seakan dunia khan berubah warna
Kukedipkan mataku seakan silau melihat cahaya
Tapi kusandingkan imanku untuk memahaminya....!!

Adakah sang waktu beralih ke tepi
Mengikis habis goncangan hati yang kian surut ditelan nurani
Hari demi hari tak terlihat bayangan ditengah terik matahari
Seolah cahaya tak tembus alam bumi.

Kunati sambil berkata dalam hati
Inikah gemericik air yang menimpa cadas...????
Goresannya tak bermakna tapi terasa direlung hati

Akankah tiupan angin mengalau samudara
Akankah biduan bernyanyi tanpa suara
Akankah pelari mundur menangkap juara
Akankah kali dan bagi memetik angka
Menghitung bilangan yang tak kunjung ada
Semoga hati ini menemukan jawabanya......!!

Kamis, 20 September 2007

Basic Control Loop Components


Learning Outcome
Upon successful completion of this module, the student will be able to describe the basic types and functions of transmitters, recorders, controllers, and control valves.
Enabling Objectives
The student will be able to:
(a) Describe the operation and construction of a pneumatic transmitter.
(b) List controller types and terms, and describe the application of each.
(c) Describe the basic types of process recorders.
(d) Describe the construction of control valves.

INTRODUCTION
In Learning Module 027-11-02-06, Introduction to Process Measurement, some common measurement devices were discussed. This module will present a brief survey of the other major components of control loops, with some typical examples of each. It will deal mainly with pneumatic control loop devices, since these are among the simplest to understand. Although most control loops today are electronic or electronic/digital, their principles are similar to those of the earlier pneumatic devices. Furthermore, many control loops, such as local level controls, still employ pneumatic components.

TRANSMITTERS
Transmitters are used to send information about some process variable to a desired location, such as a central control room, when the sensing elements are located at various distant locations.
Pneumatic transmitters similar to those shown in Fig.1 can be used to transmit signals over long distances. The mechanism basic to all pneumatic transmitters is the flappernozzle-restrictor assembly shown in Fig. 1 (a). Process conditions affect the position on the link, and this motion is converted into a varying pneumatic output.
A regulated air supply equivalent to about 140 kPa (20 psi) is furnished continuously, and allowed to expand through a restriction which has a smaller bore than that of the nozzle. If the flapper is moved far away from the nozzle, the air will bleed out of the nozzle faster than it can pass through the restriction, so the pressure below the capsule will be zero. When the flapper is moved towards the nozzle, the increased nozzle pressure will cause the capsule to move upward slightly to reduce the exhaust opening, and to increase the opening for the air supply to pass to the output and the feedback bellows. An increase in output pressure will cause the feedback bellows to expand slightly to the left to reposition the top end of the flapper. Reverse action takes place if the flapper-nozzle clearance is increased. The output of the transmitter is directly proportional to the flapper-nozzle clearance and nozzle pressure.
The link of this basic transmitter is connected to a primary sensing element, such as a bourdon tube or bellows. As the process variable changes from minimum to maximum desired value, the output of the transmitter will increase in 20 to 100 kPa (3 – 15 psi).
Figure 1: Basic Pneumatic Transmitter
 
Fig. 1(b) illustrates a simplified commercial differential pressure transmitter that can be used for level and flow measurement. For flow measurement, the high-pressure side would be connected to the upstream side of the flow restriction in the line. An increase in flow will lead to an increase in differential pressure. This, in turn, will cause the capsule or diaphragm to move slightly to the left, and there will be slight clockwise rotation of the force bar that acts as a flapper.
This action causes a proportional decrease in the flapper-nozzle clearance, and an increase in the transmitter output line pressure that will be proportional to the increase in differential pressure across an orifice plate. The feedback bellows will expand slightly with an increase in output pressure to increase the flapper-nozzle clearance a small amount to ensure proportional action of the transmitter.
When this transmitter is applied to level measurement, the high-pressure side is usually applied to the tank level, so that an increase in level will cause a proportional increase in transmitter output.
Fig. 2 shows how a differential pressure transmitter looks when installed in a flow measurement system. Note the sensing lines from the high and low-pressure sides of the orifice plate connecting to the transmitter, and the supply and output air lines going to and from the transmitter.
Figure 2: Pneumatic Flow Transmitter

INDICATORS AND RECORDERS
There are many ways of presenting or indicating the values of variables that are measured. At times a simple mechanical indicator such as a Bourdon tube is quite adequate, but at other times it may be desirable to have a permanent record of performance that can be used for future reference.

Recorders
Recorders are used to maintain a permanent record of certain variables for future reference. The two most common types are the circular chart and the strip chart recorders.
1. Circular Chart Recorders
The circular chart recorder is an earlier design than the strip chart type. One hat is designed to measure static pressure is illustrated in Fig. 3.
Figure 3: Circular Chart Recorder
A spiral Bourdon tube is connected to a recording pen through a link-lever mechanism. When the pressure in the sensing element increases, the movement of the pen will be proportional to the change in pressure in the Bourdon tube.
The chart is in the form of a circular paper disc with a hole in the centre which fits over the chart drive motor. It also has concentric circles that form the scale on which the variable is read. The "time arcs" laid out at uniform distances divide the full or concentric circles into appropriate time intervals of the total period. The chart usually makes one revolution every 24 hours, although some charts rotate in up to 7 days. The clock may be powered by manually wound springs, by electricity, or by pressurized air or gas.
2. Strip Chart Recorders
Over the years, very little has been done to reduce the size of circular chart recorders, but in the design of strip chart recorders, similar to the one in Fig. 4, there has been a marked trend to size reduction.
Figure 4: Strip Chart Recorder
The standard strip chart recorder is characterized by the uniform linear motion of a strip of paper in a vertical or horizontal direction, as shown in Fig. 4. The time lines always run perpendicular to the direction of motion of the chart, while the measurement lines can be straight or curved.
Illustrated here is a three pen recorder that can record three different variables at once. Each pen on this type of recorder is generally operated by a different transmitter output. Instead of placing the primary sensing element directly in the recorder, as in the circular chart type, the output of a transmitter, which is proportional to the process variable, is admitted to the recorder. In most pneumatic recorders of this type, a bellows or capsule is used to position the recording pen.
CRT Trend Displays
Computerized control systems can display process conditions on the monitor or screen (often referred to by its technical name, a Cathode Ray Tube or CRT). The display looks similar to a strip chart record; several trends can be placed on the same screen and a printout can be taken if desired.
This system has both advantages and limitations when compared to the dedicated, paper type recorders discussed above. The operator has the flexibility to assign any transmitter output from the process to the trend display - provided, of course, that the transmitter is connected to the computer system. This means the operator can see the trend on almost any process condition; including the trend on things which are not normally recorded, such as valve positions, ambient weather conditions, and machinery speeds. Time periods can be assigned for the graph, stretching or compressing it, to get a closer look at Rapidly changing conditions.
Graph limits can be set higher or lower, so that small changes can be closely watched. The operator can also select the process conditions that appear on the screen, placing one above or below the other. This makes it possible to diagnose operating problems, since, by visual comparison, the first upset condition and then the subsequent effects can be determined.
The major limitation of this system is that the computer can only show one screen at a time. If it is necessary to access other displays, such as control loops, the operator may need to go back and forth between screens; this is a time consuming procedure when plant conditions are upset or changing quickly. For this reason, computer control panels are often supplied with a few dedicated recorders, which monitor critical operating conditions on a continual basis.

CONTROLLERS
As mentioned in Learning Module 027-11-02-04, Introduction to Instrumentation, the controller is a key device in a control loop. It compares the actual process conditions to a desired operating value, called the setpoint. If there is any difference between setpoint and actual conditions, it sends a corrective signal out to a control valve or other similar device.
Controllers can be organized into several categories, depending on how they react to maintain a setpoint. The first category includes on-off, two-position, and multi-position controllers. The second category, sometimes referred to as "modulating", includes proportional, integral, and derivative controllers. A detailed examination of these types is beyond the Fourth Class level; however, brief look at how each of these controllers responds is included here.
On-Off, Two-Position, and Multi-Position Controllers
These controllers compare actual conditions to setpoint values, and respond by either starting or stopping a final control element. Familiar examples are the common household thermostats on furnaces and refrigerators. The furnace remains off until a minimum temperature is reached. When the furnace turns on, fuel is admitted to the main burner at a constant rate. The main fuel valve is wide open during this period. This continues until the temperature reaches a higher cut-out point, when the main fuel valve closes completely.
Two-position and multi-position controllers react the same way, except that their output signals may be high-low, or high-medium-low, rather than on-off.
Proportional Controllers
A proportional controller also compares actual conditions to setpoint; however, unlike the on-off type, it sends a variable signal to the control valve, causing it to be open, closed, or somewhere in between. The control valve position is modulated. The controller output signal will vary depending on how much the actual conditions differ from setpoint. The controller output is thus proportional to the amount of error. The output signal from a pneumatic controller to a control valve will be between 20 - 100 kPa (3 - 15 psi). Both electronic analog and computer type controllers send out 20 -100 mA signals.
Proportional Plus Integral (Reset) Controllers
For reasons beyond the scope of this module, proportional controllers are not always capable of operating the process exactly on setpoint, although they are generally close. To operate exactly on setpoint, a modification called integral, or reset, action is required.
Proportional Plus Integral plus Derivative Controllers
Further modifications can be made to the proportional plus integral controller by adding derivative (also called "rate") action. This enables the controller to respond more quickly, almost like a temporary on-off controller, if the process begins to deviate widely from the setpoint. Derivative action is usually restricted to slow-responding processes such as heating systems.
Additional Controller Terms
The student should also become familiar with the following controller terms
2. Auto/Manual Control
Most (but not all) controllers have the option of selecting either automatic or manual control. Automatic, as discussed above, means the controller responds to differences between setpoint and actual conditions. Manual control means that the operator selects the controller output; the controller does not respond on its own to the process. Manual control is necessary, for example, when the control loop transmitter is being repaired or calibrated.
3. Feedback/ Feedforward
Most control loops respond to a specific process condition after the condition has changed. Since this information is fed back to the controller, it is called a feedback system. In some specialized control systems, the controller is alerted ahead of time that a change in the process is about to occur. The controller responds before the change takes place. This is referred to as feedforward control.
4. Cascade Control
In some control systems the output signal from one controller becomes the setpoint signal for another controller. Fig. 5 shows the relationship between single loop and cascade control.


Figure 5: Cascade Control


Introduction to Control System


Learning Outcome
Upon successful completion of this module, the student will be able to discuss the principles of control systems and compare differing controller terminology.
Enabling Objectives
The student will be able to:
(a) Describe the operation of an on-off controller.
(b) Differentiate between direct-acting and reverse-acting control.
(c) Define the term offset.
(d) State the purpose of integral mode in a controller.
(e) State the purpose of derivative mode in a controller.
(f) Describe the operation of a proportional controller.

INTRODUCTION
There are several variations in the design of control systems, each producing a different form of controller response to any particular error. These differing responses are referred to as control modes. In industry, most control actions fall within one of these four modes:
  1. On-off action, sometimes denoted as two-position control, and usually used alone
  2. Proportional action
  3. Reset, or integral, action
  4. Rate, or derivative, action
Certain combinations of these actions or modes are widely used, such as proportional plus integral, or proportional plus integral plus derivative.


CONTROL MODES
The mode of control chosen for a particular process loop will depend upon many factors, such as:
  • Economics
  • Preciseness of control required.
  • Combined response delay of all the components in the loop
  • Safety needs of operating personnel and process equipment.
On-Off Control
By definition, on-off control means that the controller output is at either its minimum or its maximum. The controller will never maintain the control valve in an intermediate or throttling position, If recognition of the existence and the direction of the control error is the basic requirement for a controller, it follows that the simplest controller of all is one which responds only to these two aspects of an error. The simplest of all controllers will respond by moving the control valve as soon as an error is sensed, and it will respond in the correct direction. However, this is as far as it will go. The extent of its response will not be related to the size of the error. In fact, whether the error is large or small makes no difference. The simplest controller always moves the control valve stem the same amount, and this means all the way to its wide open or shut position.
On line, an on-off controller will control the process variable, but continuous cycling will occur. For example, in a temperature control system the control valve will close when the temperature goes above the set point (positive error); when the temperature drops below set point, the valve controlling the steam flow to the heat exchanger will open wide. This results in temperature fluctuations and some overshooting of the process variable above the set point, followed by undershooting, which is illustrated in Fig. 1.
Figure 1: Process Variations

The temperature will oscillate about the set point with an amplitude and frequency that is dependent on the capacity and time response of the process. As the process lag approaches zero, the curve will tend to become a straight line; then, the frequency of the control valve open/close cycle will become high. The response curve will remain constant in amplitude and frequency, as long as the load on the system does not change.
Fig. 2 illustrates a pneumatic on-off controller. As the process variable, which in this case is the transmitter output, exceeds the set point pressure, the flapper is moved closer to the nozzle and the controller output increases. Since there is no controller feedback, as explained under transmitter principles, a slight change in the process variable will cause the controller output to go from minimum to maximum or vice versa.
Figure 2: On-Off Controller
Any controller can be converted from direct-acting, where an increase in error signal in a positive direction will result in increased output, to reverse-acting, where an increase in error signal causes decreased output, by interchanging the set point and process variable signals shown in Fig. 2.
During normal operation of the on-off controller, a neutral zone exists in which no control is initiated, as shown in Fig. 3. For example, if the set point is set at 50% of the temperature range, the process variable (temperature) may rise to 50.5% before the control valve is closed by the controller, and the valve may not be opened before the process variable drops to 49.5%. In the neutral zone of 1% width, valve position depends on the direction of change of the process variable.
Figure 3: Controller Neutral Position
Occasionally, the neutral zone is made adjustable, but the error must always change through some small value before control action occurs. Lost motion in the linkage, along with friction in the controller and control valve, win tend to increase the neutral or dead zone.
The following requirements are necessary for on-off control to produce satisfactory results:
  • Precise control must be needed.
  • The process must have sufficient capacity to allow the control valve to keep up with the measurement cycle.
  • Energy inflow is small relative to the energy already existing in the process.
For proper on-off control, the speed of load changes must be fairly slow and the size of load change should be small. Under these conditions, an on-off controller can be applied with reduced installation costs, if variation of the process from the set point will not affect the final product.
On-off control is frequently found in air conditioning, refrigeration, and home heating systems. It is also widely used in safety shutdown systems to protect process equipment or operating staff.
On-off control is almost always the simplest and least expensive form of automatic control. It can be implemented with commercially-available mechanical, pneumatic, or electronic instrumentation.
Proportional Control
With on-off control, the controller output is either at minimum or maximum, and the controller cannot maintain the process variable at the desired condition. By using a proportional controller, the position of the final control element can be maintained anywhere between the two extremes; therefore, a smoother action can be expected.
Proportional-only control is a term usually applied to any type of control system where the absolute value of the position of the control valve is determined by the relationship between the measured variable and the set point. Change in output (corrective action) is proportional to the size of the error signal, or proportional to the deviation from the set point, so there is one and only one position of the final control element for every value of the process variable. Hence the name proportional controller.
Consider a very simple form of level control, as shown in Fig. 4, where a float operates a control valve at the input of the water supply to maintain the level in the tank. Assume the valve is closed when the tank is full, and fully open when the tank level falls to a minimum; also assume that valve opening causes a linear relation with the flow. For example, 25% valve opening causes 25% flow, 50% opening causes 50% flow.
Figure 4: Simple Proportional Control
If the output rate of liquid from the tank is 200 L/min, one can adjust the turnbuckle on the valve linkage until the set point is at 50% of maximum level. With this condition, the input and output flows would be equal. As the discharge rate is increased to 300 L/min the level in the tank drops, causing the float to drop. This, in turn,- increases the input valve opening so that the inflow is equal to the outflow. Now the level will stabilize below the original set point. Similarly, if the discharge rate is reduced to 100 L/min the level will stabilize above the set point. A change in the level (process variable) must take place before the final control element (the valve) can be repositioned. The difference between the set point and the actual value of the process variable is known as offset. Offset is an inherent characteristic of all proportional-only controllers, and may be defined as a sustained error which cannot he eliminated by means of the proportional mode of control, as shown in Fig. 5.
Figure 5: Offset as a Characteristic of Proportional Controllers
If the pivot F in Fig. 4 is moved to the left, so that the ratio of the lever arm AF/FB is decreased, a smaller change in flow will cause the control valve to go from minimum to maximum opening, and the offset will be reduced.
Fig. 6 shows a moment-balance pneumatic proportional controller. It is actually an on-off controller with a negative feedback bellows added.





Figure 6: Moment
For the controller shown in Fig. 6, initial discussions will assume that the pivot point is adjusted so that L1 and L2 are equal; also, the set point and process variable are both adjusted to a minimum value (assume a 20 to 100 kPa range is used), then adjust the force spring so the controller output is at the minimum value of 20 kPa.
When the process variable increases above the set point, the increase in output will bear a linear relationship with the deviation (process variable minus the set point pressure). As the process variable increases to the maximum value of 100 kPa, the controller output will also increase to be at maximum, as shown in Fig. 7; thus an 80 kPa deviation in the process variable will cause the controller output to increase by 80 kPa. With a proportional controller, this deviation is often referred to as the offset.
The output of the controller (V), or the valve position, is directly related to the process variable (PV). When the process variable goes through its full range of values, the controller output does likewise, and the final control element strokes through 100% of possible opening. The percent of the process variable range that causes 100% change in controller output is often called the proportional band.
Figure 7: Controller Output versus Process Variable
In the above example, the proportional band is 100%, because a 100% change of PV will cause a 100% change of V The ratio of change of output (DV) to change of input (DPV) is referred to as the gain (K) of a proportional controller.
Consider what happens if the pivot in Fig. 6 is now adjusted so that L2 /L1=2, and with a 20 kPa set point and PV pressure applied, the spring force is
adjusted so the output is 20 kPa.

Normally, this calibration is not required on an actual controller, but these design features are too complicated to show in a simple sketch. After this adjustment, if the PV input pressure increases above the set point, the PV signal has to increase only to 60 kPa, or 50%, before the output increases to maximum or 100%.
It can be seen that the width of the proportional band or the gain determines the output from the proportional controller, and the amount of valve movement for a given error (the difference between the value of the process variable and the set point). Also, as the gain is increased or the proportional band is made narrower or decreased, the offset of a proportional controller decreases, causing the process to remain closer to the set point.
Consider Fig. 7 with variations in process load. The gain of the controller can be increased only to a certain value beyond which the controller output will start to oscillate like an on-off controller. Any controller with a proportional band of 2% or less may be considered to operate exactly like an on-off controller. In Fig. 4, if the ratio AF/FB is made very small, a disturbance on the water surface can cause the valve to be positioned from the fully closed to the fully open position.
The fact that the proportional band is equal to the percentage change in the process variable (%PV) that causes a 100% change in the controller output (100% V), suggests that the following equation holds true:
Normally, better control of processes is achieved if the controller output is above minimum value when the error is zero, as any final control element such as a valve operates better at about mid-opening. To overcome this effect, a constant spring force, often called manual reset, is imposed by placing an opposing spring opposite to the negative feedback bellows.
When the process variable is at the set point, the clockwise moments will be equal to the counterclockwise moments, so the force provided by the negative feedback bellows must also be equal to the spring force.





The force of the spring can be adjusted to obtain the desired output when the process variable is at the set point, as indicated in Fig. 8.





Figure 8: Proportional Controller
When a proportional controller is used in a process, offset will always exist. As the gain is increased, the offset will decrease; but increasing the gain beyond a certain limit, depending on the process, will cause undesirable oscillation or instability in output and in the value of the process variable. In some processes, offset cannot be tolerated, as it will result in an inferior product. To overcome this problem, the constant spring force, which is actually manually reset, is replaced by automatic reset or integral bellows.
Proportional Plus Reset Control
Integral action, often called reset, is a controller mode that makes a corrective action whose rate of change is proportional to the size of error and the time it lasts. This is accomplished by adding a positive feedback bellows to a proportional controller, which will continue to change the output until the error is eliminated, or until the controller output is at either extreme of its range. This is shown in Fig. 9
Figure 9: Proportional Plus Reset Controller
Assume that a step change is introduced in the proportional plus integral controller shown in Fig. 9, so the process variable (PV) suddenly exceeds the set point. A step change is a vertical rise in PV. The controller output will immediately increase, due to proportional action, by an amount that depends on the gain and the size of error. This will create a pressure differential across the integral restriction valve. As the pressure differential decreases, the increase in force inside the integral bellows causes an increase in output, followed again by an increase in negative feedback, in order to maintain moment balance.
While this integration is occurring, the controller output is increased further than if proportional action were used alone, so that the final control element is moved further, causing the process variable to approach the set point. As the error approaches zero, or the PV approaches the set point, the pressure differential across the integral adjustment valve will also approach zero.
When the PV is at the set point, moment balance is achieved, so that the set point and PV pressures are equal, and likewise the pressure in the negative feedback bellows is equal to the pressure in the integral bellows. If the process variable drops below the set point, the action in the controller becomes reversed.
The capacity tank causes a delay in the integral action by providing a capacitance, and thus providing more stability in control. In proportional plus integral controllers, the offset due to proportional action is eliminated over a period of time.
The rate of change of the corrective output by the integral mode is expressed in terms of the output change due to proportional action alone; also, for any given deviation, the change in proportional controller output will depend on the gain. Integral or reset action is always expressed in terms of the time that it takes for the integral action to reproduce or repeat the output due to proportional action after a step change is introduced. The time that it takes integral action to reproduce the proportional action is known as reset time, expressed in minutes.
Figure 10: Reset Control Action
Integral action can also be expressed in terms of repeats per minute. This is the number of times per minute that the initial proportional action is repeated by integral action.
Reset or integral time can be varied by manipulating the integral adjustment valve. If the valve restriction is increased (assuming PV is above the set point, SP), the pressure in the integral bellows that provides positive feedback will increase more slowly, and the controller output will increase at a lesser rate. If the restriction valve is open wide, the pressures in both feedback bellows will increase almost simultaneously, so the positive feedback will cancel the effects of negative feedback immediately. This will result in a very short reset time, and the output of the controller oscillates like an on-off controller.
The output of a reset (integral) controller varies in accordance with the magnitude of the error signal, the difference between the set point and the controlled variable, and the duration of the error. The term integral originates from the mathematical expression that states that the output of the controller is equal to the time integral of the error signal.
The controller response is illustrated schematically in Fig. 10. Initially, the controlled variable is at the set point value and the system is in equilibrium. At time t, there is a disturbance to the process that changes the controlled variable in the form of a step. This creates a constant error signal in the time period from t1 to t2, which results in the controller output changing at a constant rate in an attempt to eliminate the error signal.
Fig. 10 does not show the controlled variable being brought back to the set point, but this would eventually happen. Basically, the output of this controller will change to any value within the output signal range, to alter the manipulated variable so that the controlled variable is maintained at the set point.
The reset action is adjustable, and it should be noted that the adjustment on a controller might be identified in two different ways:
  1. Reset rate in repeats per minute, or the number of times that the error signal is duplicated as a change in the controller output signal within one minute. Electronic controllers have a broad range of adjustment of 0.1 to 100 repeats per minute.
  2. Reset time is the time in minutes that is required for the error signal to be duplicated once in the controller output signal.
Fig. 11 illustrates how the gain and reset settings can influence the manner in which the controlled variable is returned to the set point. It is interesting to note that the reaction within the process is almost identical when either the gain or the reset is too high, and it is similar again when these settings are too low.
Figure 11: Proportional Plus Reset Controller Responce
Proportional Plus Reset Plus Rate Control
Rate (derivative) control action is normally used with proportional and reset control modes, but it is shown separately in Fig. 12 to help convey the unique action of this mode of control. Rate action creates a large initial controller output reaction which dissipates with time. Thus, it gives the corrective control action an initial boost, allowing the manipulated variable to change quickly and return the controlled variable to normal or near normal.
The rate adjustment of a controller, which is a measure of how quickly the initial action is removed from the controller output, might range from 0. 1 to 25 minutes.
Rate control is used to counteract the time lags in some processes, such as those involving the transfer of temperature changes. In many processes such as temperature control, there is considerable lag or delay from the time that a change in load or some other disturbance takes place, to the time that the change in the process variable is sensed by any controller. Derivative or rate action, which could not possibly control the process by itself, takes into account the speed at which the variable is deviating from the set point.



Figure 12: Rate Control Action
Fig. 13 illustrates the response of proportional action to a ramp change in the process variable and the controller response when rate action is added. At a certain time, To, the process variable starts to deviate from the set point. In another certain time, T2 (in minutes), proportional action alone will increase the controller output from A to B. If the same controller has rate action added to it at time To, when the process variable starts to deviate from the set point, the rate action will cause a vertical rise in output; then proportional action will cause the controller output to increase steadily, taking the controller only T1, minutes to increase the controller output from A to B.

Rate contribution occurs only when there is a change in rate of error. This change occurs only at time To, because after that the error is changing at a constant rate.
The speed of rate action is known as rate time, TD.
In Fig. 13
TD = T2 - T1
If the process variable starts to deviate from the set point at a faster rate, rate contribution to controller output will increase; also, T1 - T2 will become greater.
Figure 13: Rate Contribution to Controller Output

Sabtu, 15 September 2007

Meredam dan mengatasi Anak2 yang suka Berantem….!!


Rating:★★★★
Category:Other
لسلام عليكم و رحمة الله و بركاته

0707 Tekwondo di SMUN2 (1) photo 024-5TekwondodiSMUN2Jul07.jpg
Mendidik anak memeang gampang-gampang susah…..!!
Kadang diperlukan kearifan dan strategi agar anak-anak kita bisa tumbuh kembang lebih baik, baik itu secara fisik, mental dan spiritual.
Dalam menangani hal semacam ini saya mempunyai kiat-kiat khusus….terutama dalam hal “ Berantem “ antar mereka sendiri.

Kebetulan anak pertama dan kedua selisih umur 15 bulan, jadi secara postur tubuh gak terlalu beda jauh……!!
Kebiasaan mereka dalam berselisih paham selalu saja timbul keributan-keributan kecil : baik itu adu mulut bahkan kadang sampe berantem…..ujung-ujungnya yang kecil nangis….nah kalo udah nangis…..yang gede juga berhenti…..karena mereka pada takut juga kalau sampe Mama/ Papanya turun tangan……!!!

Hal yang sering saya lakukan bila anak-anak berantem :
1. Kalau mereka ribut…….saya biarin dulu……..maksud saya biar mereka bisa ngatasin masalah mereka sendiri……!!, kalau mereka masih juga berantem, baru saya ikut melerai…!
2. Kalau sampe saya/ istri turun tangan biasanya semua akan SALAH…..ga ada satu pun yang bener….pokoknya kalau berantem semuanya SALAH…..titik….!!!, ada banyak penyelesaian yang bisa dilakukan tapi bukan dengan berantem.
3. Setelah semua adem….baru saya deketin satu-persatu dan memberi tahu mana yang bener dan mana yang salah, kemudian menekankan pada mereka bagaimana sebaiknya sikap Abang terhadap adik dan begitu juga sebaliknya.
4. Yang aneh kalau salah satu diantara mereka ga ada dirumah…..mereka akan nanya Ma/ Pa dimana Bang Aji atau dimana Adek Ray…..( hehehehe…dasar anak-anak, kalau ga ada mereka kesepian juga ).

Kiat-kiat untuk mengurangi mereka agar ga sering berantem :
1. Usahakan mereka tetap bersama, misalnya : Saat mereka Mandi pagi, Tidur, Makan ataupun bermain  kendala pertamanya memang akan ada dan besar. Tapi akan bekurang dengan sendirinya, karena mereka akan saling membutuhkan.
2. Kembangkan Fisik dan Sportifitas mereka, misalnya dengan Les Tekwondoo, Silat atau Karate, Karena saya alami sendiri….( noh …kalo mo berantem saat “ Fighting “ ….gunakan pikiran dan tenaga untuk menjatuhkan lawan )…tapi dalam kondisi Muka dan badan dilindungi alat ( body covering ), kalau dirumah gak boleh berantem.
3. Kalo lagi dimana aja usahakan yang lebih Tua jadi Leader…..biar dia memfungsikan dirinya bahwa yang tua harus jadi pemimpin dan yang muda harus patuh.
4. Tekankan 2 hal bahwa Abang HARUS SAYANG sama Adek & Adek HARUS PATUH sama Abang”

Itulah Kiat2 saya dalam mengatasi anak2 supaya jangan berantem, dan hasilnya memang ada banyak perubahan, terutama setelah meraka Les Tekwondoo sejak 4 bulan yang lalu.

Ada Comments…..??? Sharing Yuck…..!!!!!

Kamis, 13 September 2007

Getaran dan Goncangan Gempa Terasa Banget.....!!!


Rating:★★★★
Category:Other
Sept 12, Jam 18:10 ~ 18:21

Maren Pas Pulang kerja and Makan Mess Hall ( Kantin ) kira-kira jam 18:15, gw dan temen-temen yang lagi makan semeja, merasakan ada goncangan atau getaran atau kepala kita terasa seperti pusing.....!!!
Karuan saja gw dan seluruh rekan-rekan yang sedang makan pada keluar.....dan pas diluar goyangan terasa lebih besar dan pohon ikut terlihat bergoyang.

Base Camp gw khan adanya di sebelah timur sumatera di daerah Tanjung Jabung Barat Jambi goncangannya terasa buanget. Seumur-umur kayaknya baru kali ini gw merasakan goyangan atau goncangan yang tersa banget kayak gini.....gw pernah ngerasaain goyangan atau goncangan yang skalanya masih dibawah 7 SR......dan saat kejadian emang bener sekalanya diatas 7 SR ( 7.9 SR ).

Goncangan yang terasa bener ya terjadi kira-kira 5 menitan 18:15 ~ 18:21.....terus gw telepon istri di tangerang, katanya dia ngak merasakan adanya goncangan gempa....telp juga orang tua di palembang goncangan dan getarannya juga terasa....!!!

Eh, pas masuk kekamar...berita di TV mengenai masalah gempa tersebut terjadi di Barat Daya Bengkulu dengan Kedalaman 10 KM dengan getaran 7.9 SR....dan tidak menimbulkan Tsunami.


Sept. 13, Jam 06: 50 ~ 07:01

Pas Gw lagi nulis masalah gempa ini,.....terasa lagi getaran itu....hampir sama seperti kemaren sore......karuan aju seluruh Maintenance Crew pada berhamburan keluar.....and diluar pandangan mata gw kearah Tower antena dan tiang Listrik....!!
Abis gw pikir bila guncangan semakin besar....kalau tower ini ada masalah pan bisa berabe....terselamatkan dari reruntuhan gedung....eh malah kena Tower atau tiang listrik.....!!!???

Tiang listrik terlihat goyangannya.......tapi tower ga terlihat.......gw estimet ini magnitudonya ga terlalu besar....tapi pusat gempanya belom gw ketahui ada dimana.....???
Goyangan masih terasa walaupun ga terlalu besar......sorry gw cut dulu.....!!
Gw harus meeting rencanain tugas hari ini......???

Gimana didaerah anda, apakah juga terasa ada gempa.....sharing Yok....???


Minggu, 02 September 2007

Belajar akan sebuah Penilaian


Rating:★★★★
Category:Other

لسلام عليكم و رحمة الله و بركاته

Penilaian seseorang kadang bersifat subejektif jika tampak dari apa yang terlihat, terlihat sebagai kesan, atau kesan yang terbungkus oleh tampilan luar atau tampilan sesaat.
Tampilan yang sesat inilah, kemudian yang mempengaruhi penyimpulan kita terhadap suatu masalah, suatu peristiwa atau apapun bentuknya.
Coba simak tulisan dibawah ini yg dikirim dari milist tetangga :

Kepada Yth
Tuhan
di Surga

Tuhan yang baik, saya mau melanjutkan sekolah, tapi orang tua saya tidak punya uang.
Ibu saya juga sedang sakit, mau beli obat. Tuhan saya butuh uang Rp 20.000 utk beli obat ibu, Rp 20.000 untuk membayar uang sekolah, Rp 10.000 untuk membayar uang seragam, dan uang buku Rp 10.000. Jadi semuanya Rp 60.000

Terima kasih Tuhan, saya tunggu kiriman uangnya.

Dari: Rio


Rio pun pergi ke kantor pos untuk mengirim suratnya. Membaca tujuan
surat tersebut, petugas kantor pos merasa iba melihat Rio , sehingga
tidak tega untuk mengembalikan suratnya. Bingung mau di kemanakan surat
itu, akhirnya petugas pos itu menyerahkannya ke kantor polisi terdekat.*


Membaca isi surat itu, Komandan polisi merasa iba dan tergerak hatinya
utk menceritakan hal tsb kepada anak buahnya. Walhasil, para polisi pun
mengumpulkan dana utk diberikan ke Rio , tetapi dana yang terkumpul
Hanya Rp 55.000,-


Sang Komandan pun memasukan uang yang terkumpul ke dalam amplop,
menuliskan keterangan: "Dari Tuhan di Surga" dan menyerahkan ke anak
buahnya utk di kembalikan ke Rio .


Menerima uang tsb, Rio merasa sangat senang permintaannya terkabul,
walaupun yang diterima hanya Rp 55.000,-. Rio pun bergegas mengambil
kertas dan pensil, dan mulai menulis surat lagi.

"TUHAN LAIN KALI KALO MAU KIRIM UANG, JANGAN LEWAT POLISI, KARENA KALO LEWAT POLISI DI POTONG RP 5.000,-"

From: Ronald Lumban Tobing
To: Group AA
Date: Sat, 18 Aug 2007 22:17:09 -0700 (PDT)
Subject: [SB] SURAT seorang ANAK


Bagaimana anda menanggapi hal ini,....??
Kalau menurut hemat saya, pada saat mendapatkan suatu situasi apapun yang terbaik harus kita lakukan adalah :
1. Berpikir Positif --> mungkin inilah yang terbaik yang saya miliki untuk saat ini
2. Ucapkan terimakasih baik kepada mahluk sesama ataupun kepada Allah yang Mahakuasa
3. Mungkin anda mempunai pendapat lain......???


Sebuah kedewasaan dalam berpikir akan menempatkan kita kepada hal-hal yang bijaksana…..dalam menilai sesuatu.

Sabtu, 01 September 2007

Telaga Hati


Rating:★★★★
Category:Other
لسلام عليكم و رحمة الله و بركاته


Saya suka dengan tulisan dibawah ini, kalau hati sedang galau saya suka membaca berulang-ulang......!!!
Hingga hati saya tentram dan damai kembali.

Mungkin ada teman atau rekan yg sedang galau menghadapi persoalan....
cobalah renungkan Tulisan ini.....!!!


Telaga Hati

Suatu hari seorang tua bijak didatangi seorang pemuda yang sedang dirundung masalah. Tanpa membuang waktu pemuda itu langsung menceritakan semua masalahnya.

Pak tua bijak hanya mendengarkan dgn seksama, lalu ia mengambil segenggam serbuk pahit dan meminta anak muda itu untuk mengambil segelas air. Ditaburkannya serbuk pahit itu ke dalam gelas, lalu diaduknya perlahan.

"Coba minum ini dan katakan bagaimana rasanya ", ujar pak tua.

"Pahit, pahit sekali ", jawab pemuda itu sambil meludah ke samping. Pak tua itu tersenyum, lalu mengajak tamunya ini untuk berjalan ke tepi telaga belakang rumahnya. Kedua orang itu berjalan berdampingan dan akhirnya
sampai ke tepi telaga yg tenang itu. Sesampai disana, Pak tua itu kembali menaburkan serbuk pahit ke telaga itu, dan dgn sepotong kayu ia mengaduknya.

"Coba ambil air dari telaga ini dan minumlah." Saat si pemuda mereguk air itu, Pak tua kembali bertanya lagi kepadanya, "Bagaimana rasanya ?"

"Segar ", sahut si pemuda.

"Apakah kamu merasakan pahit di dalam air itu ?" tanya pak tua.

"Tidak, " sahut pemuda itu.

Pak tua tertawa terbahak-bahak sambil berkata: "Anak muda, dengarkan baik-baik. Pahitnya kehidupan, adalah layaknya segenggam serbuk pahit ini, tak lebih tak kurang. Jumlah dan rasa pahitnyapun sama dan memang akan
tetap sama. Tetapi kepahitan yg kita rasakan sangat tergantung dari wadah yang kita miliki.? Kepahitan itu akan didasarkan dari perasaan tempat kita meletakkannya. Jadi saat kamu merasakan kepahitan dan kegagalan dalam hidup, hanya ada satu yg kamu dapat lakukan; lapangkanlah dadamu menerima semuanya itu, luaskanlah hatimu untuk menampung setiap kepahitan itu."

Pak tua itu lalu kembali menasehatkan : "Hatimu adalah wadah itu. Perasaanmu adalah tempat itu. Kalbumu adalah tempat kamu menampung segalanya.? Jadi jangan jadikan hatimu seperti gelas, buatlah laksana telaga yg mampu menampung setiap kepahitan itu, dan merubahnya menjadi kesegaran dan kedamaian."

Karena Hidup adalah sebuah pilihan..mampukah kita jalani kehidupan dengan baik sampai ajal kita menjelang..?
belajar bersabar menerima kenyataan adalah yang terbaik.